yolov7


yolov7

整体结构

输入input、骨干网络backbone、颈部neck、头部head

yolov7

  1. 图片经过input部分数据增强等一系列操作进行预处理后,被送入backbone
  2. backbone对处理后的图片提取特征
  3. 提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征
  4. 最终,融合后的特征被送入检测头,经过检测之后输出得到结果

prototype

prototype learning讲解

K均值聚类是原型学习的一个典型示例

https://openaccess.thecvf.com/content/CVPR2021/papers/Zhu_Prototype_Augmentation_and_Self-Supervision_for_Incremental_Learning_CVPR_2021_paper.pdf

trick

CBAM加一个,在yolov7_backbone处

def forward(self, x):
x0 = self.stage0(x)
x1 = self.stage1(x0)

x2 = self.elan_0(x1)
x2 = self.cbam_0(x2) #! 添加 CBAM

x3 = self.elan_1(x2)
# x3 = self.cbam_1(x3) #! 添加 CBAM

x4 = self.elan_2(x3)
# x4 = self.cbam_2(x4) #! 添加 CBAM

x5 = self.elan_3(x4)
# x5 = self.cbam_3(x5) #! 添加 CBAM

return x3, x4, x5

Author: CuberSugar
Reprint policy: All articles in this blog are used except for special statements CC BY 4.0 reprint polocy. If reproduced, please indicate source CuberSugar !
  TOC